Super-Lagrangian and variational principle for generalized continuity equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

Generalized Lagrangian Master Equations

We discuss the geometry of the Lagrangian quantization scheme based on (generalized) Schwinger-Dyson BRST symmetries. When a certain set of ghost fields are integrated out of the path integral, we recover the Batalin-Vilkovisky formalism, now extended to arbitrary functional measures for the classical fields. Keeping the ghosts reveals the crucial role played by a natural connection on the spac...

متن کامل

Variational principle for generalized Gibbsian measures

We study the thermodynamic formalism for generalized Gibbs measures, such as renormalization group transformations of Gibbs measures or joint measures of disordered spin systems. We first show existence of the relative entropy density and obtain a familiar expression in terms of entropy and relative energy for ”almost Gibbsian measures” (almost sure continuity of conditional probabilities). We ...

متن کامل

A variational principle for nonlinear transport equations

We verify -after appropriate modificationsan old conjecture of Brezis-Ekeland [3] concerning the feasibility of a global and variational approach to the problems of existence and uniqueness of solutions of non-linear transport equations, which do not normally fit in an Euler-Lagrange framework. Our method is based on a concept of “anti-self duality” that seems to be inherent in many problems, i...

متن کامل

Lagrangian Description of the Variational Equations

A variant of the usual Lagrangian scheme is developed which describes both the equations of motion and the variational equations of a system. The required (prolonged) Lagrangian is defined in an extended configuration space comprising both the original configurations of the system and all the virtual displacements joining any two integral curves. Our main result establishes that both the Euler-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2019

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8121/ab082f